Nonparametric Bayesian Matrix Factorization by Power-EP
نویسندگان
چکیده
Many real-world applications can be modeled by matrix factorization. By approximating an observed data matrix as the product of two latent matrices, matrix factorization can reveal hidden structures embedded in data. A common challenge to use matrix factorization is determining the dimensionality of the latent matrices from data. Indian Buffet Processes (IBPs) enable us to apply the nonparametric Bayesian machinery to address this challenge. However, it remains a difficult task to learn nonparametric Bayesian matrix factorization models. In this paper, we propose a novel variational Bayesian method based on new equivalence classes of infinite matrices for learning these models. Furthermore, inspired by the success of nonnegative matrix factorization on many learning problems, we impose nonnegativity constraints on the latent matrices and mix variational inference with expectation propagation. This mixed inference method is unified in a power expectation propagation framework. Experimental results on image decomposition demonstrate the superior computational efficiency and the higher prediction accuracy of our methods compared to alternative Monte Carlo and variational inference methods for IBP models. We also apply the new methods to collaborative filtering and role mining and show the improved predictive performance over other matrix factorization methods. Appearing in Proceedings of the 13 International Conference on Artificial Intelligence and Statistics (AISTATS) 2010, Chia Laguna Resort, Sardinia, Italy. Volume 9 of JMLR: W&CP 9. Copyright 2010 by the authors.
منابع مشابه
Particle Filtering for Nonparametric Bayesian Matrix Factorization
Many unsupervised learning problems can be expressed as a form of matrix factorization, reconstructing an observed data matrix as the product of two matrices of latent variables. A standard challenge in solving these problems is determining the dimensionality of the latent matrices. Nonparametric Bayesian matrix factorization is one way of dealing with this challenge, yielding a posterior distr...
متن کاملNonparametric Max-Margin Matrix Factorization for Collaborative Prediction
We present a probabilistic formulation of max-margin matrix factorization and build accordingly a nonparametric Bayesian model which automatically resolves the unknown number of latent factors. Our work demonstrates a successful example that integrates Bayesian nonparametrics and max-margin learning, which are conventionally two separate paradigms and enjoy complementary advantages. We develop ...
متن کاملBeta Process Non-negative Matrix Factorization with Stochastic Structured Mean-Field Variational Inference
Beta process is the standard nonparametric Bayesian prior for latent factor model. In this paper, we derive a structured mean-field variational inference algorithm for a beta process non-negative matrix factorization (NMF) model with Poisson likelihood. Unlike the linear Gaussian model, which is well-studied in the nonparametric Bayesian literature, NMF model with beta process prior does not en...
متن کاملBayesian Nonparametric Matrix Factorization for Recorded Music
Recent research in machine learning has focused on breaking audio spectrograms into separate sources of sound using latent variable decompositions. These methods require that the number of sources be specified in advance, which is not always possible. To address this problem, we develop Gamma Process Nonnegative Matrix Factorization (GaP-NMF), a Bayesian nonparametric approach to decomposing sp...
متن کاملInfinite Composite Autoregressive Models for Music Signal Analysis
This paper presents novel probabilistic models that can be used to estimate multiple fundamental frequencies (F0s) from polyphonic audio signals. These models are nonparametric Bayesian extensions of nonnegative matrix factorization (NMF) based on the source-filter paradigm, and in them an amplitude or power spectrogram is decomposed as the product of two kinds of spectral atoms (sources and fi...
متن کامل